55 research outputs found

    Time-dependent spectral-feature variations of stars displaying the B[e] phenomenon; I. V2028 Cyg

    Full text link
    We present results of nearly six years of spectroscopic observations of the B[e] star V2028 Cyg. The presence of the cold-type absorption lines combined with a hot-type spectrum indicate the binarity of this object. Since B[e] stars are embedded in an extended envelope, the usage of common stellar atmosphere models for the analysis is quite inappropriate. Therefore, we focus on the analysis of the long-term spectral line variations in order to determine the nature of this object. We present the time dependences of the equivalent width and radial velocities of the H alpha line, [O I] 6300 A, Fe II 6427, 6433, and 6456 A lines. The bisector variations and line intensities are shown for the H alpha line. The radial velocities are also measured for the absorption lines of the K component. No periodic variation is found. The observed data show correlations between the measured quantities, which can be used in future modelling

    2.5-MHD models of circumstellar discs around FS~CMa post-mergers : I. Non-stationary accretion stage

    Full text link
    We investigate the dynamic evolution of gaseous region around FS~CMa post-mergers. Due to the slow rotation of a central B-type star, the dynamics is driven mainly by the magnetic field of the central star. Recent observations have allowed us to set a realistic initial conditions such as, the magnetic field value (B6×103GB_\star\approx6\times10^{3}G), the mass of the central star (M=6MM_\star=6M_\odot), and the initial disc density ρd0[1013gcm3,1011gcm3]\rho_{d0}\in[10^{-13}\mathrm{g\,cm^{-3}},10^{-11}\mathrm{g \, cm^{-3}}] . We use the PLUTO code to perform 2.5D-MHD simulations of thin and thick discs models. Especially relevant for the interpretation of the observed properties of FS~CMa post-mergers are the results for low-density discs, in which we find formation of a jet emerging from inner edge of the disc, as well as the formation of the so called "hot plasmoid" in the corona region. Jets are probably detected as discrete absorption components in the resonance lines of FS~CMa stars. Moreover, the magnetic field configuration in the low-density plasma region, favors the appearance of magnetocentrifugal winds from the disc. The currents toward the star created by the magnetic field may explain accidentally observed material infall. The disc structure is significantly changed due to the presence of the magnetic field. The magnetic field is also responsible for the formation of a hot corona as observed in several FS~CMa stars through the Raman lines. Our results are valid for all magnetic stars surrounded by a low density plasma, i.e., some of stars showing the B[e] phenomenon.Comment: 12 pages, 6 figure

    Principal component analysis - an efficient tool for variable stars diagnostics

    Get PDF
    We present two diagnostic methods based on ideas of Principal Component Analysis and demonstrate their efficiency for sophisticated processing of multicolour photometric observations of variable objects.Comment: 8 pages, 4 figures. Published alread

    Multitechnique testing of the viscous decretion disk model I. The stable and tenuous disk of the late-type Be star β\beta CMi

    Full text link
    The viscous decretion disk (VDD) model is able to explain most of the currently observable properties of the circumstellar disks of Be stars. However, more stringent tests, focusing on reproducing multitechnique observations of individual targets via physical modeling, are needed to study the predictions of the VDD model under specific circumstances. In the case of nearby, bright Be star β\beta CMi, these circumstances are a very stable low-density disk and a late-type (B8Ve) central star. The aim is to test the VDD model thoroughly, exploiting the full diagnostic potential of individual types of observations, in particular, to constrain the poorly known structure of the outer disk if possible, and to test truncation effects caused by a possible binary companion using radio observations. We use the Monte Carlo radiative transfer code HDUST to produce model observables, which we compare with a very large set of multitechnique and multiwavelength observations that include ultraviolet and optical spectra, photometry covering the interval between optical and radio wavelengths, optical polarimetry, and optical and near-IR (spectro)interferometry. Due to the absence of large scale variability, data from different epochs can be combined into a single dataset. A parametric VDD model with radial density exponent of nn = 3.5, which is the canonical value for isothermal flaring disks, is found to explain observables typically formed in the inner disk, while observables originating in the more extended parts favor a shallower, nn = 3.0, density falloff. Modeling of radio observations allowed for the first determination of the physical extent of a Be disk (355+10^{+10}_{-5} stellar radii), which might be caused by a binary companion. Finally, polarization data allowed for an indirect measurement of the rotation rate of the star, which was found to be W0.98W \gtrsim 0.98, i.e., very close to critical.Comment: 19 pages (35 including online material), 17 figures, 2 online figures, 2 online tables with dat

    Time-dependent spectral-feature variations of stars displaying the B[e] phenomenon III. HD 50138

    Full text link
    We analyse spectroscopic observations of the B[e] star HD 50138 (MWC 158, V743 Mon, or IRAS 06491-0654), a member of the FS CMa group, obtained over the last twenty years. Four different epochs are identified in the observational data, where the variability of the spectral features is substantially different. Additionally, two long periods of (3 000 +/- 500) and (5 000 +/- 1000) days are found in the variations of the equivalent widths of the H alpha and [OI] 6300 A lines and radial velocities of the H alpha line violet peak. Modest signatures of a regular period of ~34 days in the radial velocities of the H alpha red peak and H beta central depression are found in the season 2013/2014. The H alpha V/R changes indicate a periodicity of ~50 days. The correlations between individual spectral features significantly restricts the model of the object and suggest that it is most likely a binary system with a highly distorted disc with spiral arms around the primary component. At the same time, no obvious signs of the secondary component has been found in the object's spectrum

    Radiative transfer in moving media II. Solution of the radiative transfer equation in axial symmetry

    Full text link
    A new method for the formal solution of the 2D radiative transfer equation in axial symmetry in the presence of arbitrary velocity fields is presented. The combination of long and short characteristics methods is used to solve the radiative transfer equation. We include the velocity field in detail using the Local Lorentz Transformation. This allows us to obtain a significantly better description of the photospheric region, where the gradient of the global velocity is too small for the Sobolev approximation to be valid. Sample test calculations for the case of a stellar wind and a rotating atmosphere are presented.Comment: 11 pages, 19 figures. accepted by Astronomy and Astrophysic

    Properties and nature of Be stars 30. Reliable physical properties of a semi-detached B9.5e+G8III binary BR CMi = HD 61273 compared to those of other well studied semi-detached emission-line binaries

    Full text link
    Reliable determination of the basic physical properties of hot emission-line binaries with Roche-lobe filling secondaries is important for developing the theory of mass exchange in binaries. It is a very hard task, however, which is complicated by the presence of circumstellar matter in these systems. So far, only a small number of systems with accurate values of component masses, radii, and other properties are known. Here, we report the first detailed study of a new representative of this class of binaries, BR CMi, based on the analysis of radial velocities and multichannel photometry from several observatories, and compare its physical properties with those for other well-studied systems. BR CMi is an ellipsoidal variable seen under an intermediate orbital inclination of ~51 degrees, and it has an orbital period of 12.919059(15) d and a circular orbit. We used the disentangled component spectra to estimate the effective temperatures 9500(200) K and 4655(50) K by comparing them with model spectra. They correspond to spectral types B9.5e and G8III. We also used the disentangled spectra of both binary components as templates for the 2-D cross-correlation to obtain accurate RVs and a reliable orbital solution. Some evidence of a secular period increase at a rate of 1.1+/-0.5 s per year was found. This, together with a very low mass ratio of 0.06 and a normal mass and radius of the mass gaining component, indicates that BR CMi is in a slow phase of the mass exchange after the mass-ratio reversal. It thus belongs to a still poorly populated subgroup of Be stars for which the origin of Balmer emission lines is safely explained as a consequence of mass transfer between the binary components.Comment: 17 pages, 5 figures, accepted for publication in Astronomy and Astrophysics. appears in Astronomy and Astrophysics 201

    Improved model of the triple system V746 Cas that has a bipolar magnetic field associated with the tertiary

    Full text link
    V746 Cas is known to be a triple system composed of a close binary with an alternatively reported period of either 25.4d or 27.8d and a third component in a 62000d orbit. The object was also reported to exhibit multiperiodic light variations with periods from 0.83d to 2.50d, on the basis of which it was classified as a slowly pulsating B star. Interest in further investigation of this system was raised by the detection of a variable magnetic field. Analysing spectra from four instruments, earlier published radial velocities, and several sets of photometric observations, we arrived at the following conclusions: (1) The optical spectrum is dominated by the lines of the B-type primary (Teff1~16500(100) K), contributing 70% of the light in the optical region, and a slightly cooler B tertiary (Teff3~13620(150) K). The lines of the low-mass secondary are below our detection threshold; we estimate that it could be a normal A or F star. (2) We resolved the ambiguity in the value of the inner binary period and arrived at a linear ephemeris of T_super.conj.=HJD 2443838.78(81)+25.41569(42)xE. (3) The intensity of the magnetic field undergoes a~sinusoidal variation in phase with one of the known photometric periods, namely 2.503867(19)d, which we identify with the rotational period of the tertiary. (4) The second photometric 1.0649524(40)d period is identified with the rotational period of the B-type primary, but this interpretation is much less certain and needs further verification. (5) If our interpretation of photometric periods is confirmed, the classification of the object as a slowly pulsating B star should be revised. (6) Applying an N-body model to different types of available observational data, we constrain the orbital inclination of the inner orbit to ~60 deg to 85 deg even in the absence of eclipses, and estimate the probable properties of the triple system and its components.Comment: Accepted for publication in Astronomy and Astrophysic

    Influence of rotation velocity gradient on line profiles of accretion discs of CVs

    Get PDF
    We show the influence of the Keplerian velocity shear on the line profiles of cataclysmic variable discs. The complete disc structure is taken into account. The radial disc structure follows the alpha disc approximation. Based on this assumption, the vertical structure is computed using the detailed non-LTE code AcDc. The obtained opacities and source functions are interpolated in the 2D grid, where the radiative transfer is calculated with the inclusion of the velocity field gradient. © International Astronomical Union 2012

    Influence of the velocity gradient on the line formation in discs of cataclysmic variables

    Get PDF
    Context. The velocity field gradient in the radiative transfer in disc models of cataclysmic variables (CVs) is usually neglected; however, the geometry of the system and the value of Keplerian velocity suggest that it can be important for high inclination angles. Aims. We investigate the influence of the Keplerian velocity gradient on the line formation in CV discs. Methods. The vertical structure of the disc was determined using the NLTE accretion disc code AcDc, where the hydrostatic equation, the energy balance equation, the radiative transfer equation, the rate equations, and the equations of charge and particle conservation are consistently solved using the accelerated lambda iteration. NLTE opacities and emissivities are interpolated onto a 2D grid, where the radiative transfer equation was then solved with the velocity field taken into account. Results. We show line-profile changes and limb-darkening dependences for the Hα and Hγ lines in a model of SS Cyg, along with the HeI 4923 A° line of a model representing a typical AM CVn system. Both systems are considered in the quiescent phase. Conclusions. The line-profile changes due to the velocity gradient in the disc are small enough for most CV discs to allow the classical approach, where the radiative transfer is solved through the static disc and the velocity field is only taken into account in the final flux integration. However, the exact solution must be performed for CVs, where the disc rim plays an important role (inclination angles almost 90°). Extremely cool and relatively transparent discs under high inclinations should also be investigated with detailed radiative transfer models. © 2011 ESO
    corecore